An EGFR/Ebi/Sno Pathway Promotes Delta Expression by Inactivating Su(H)/SMRTER Repression during Inductive Notch Signaling

نویسندگان

  • Leo Tsuda
  • Raghavendra Nagaraj
  • S.Lawrence Zipursky
  • Utpal Banerjee
چکیده

The Notch and Epidermal Growth Factor Receptor (EGFR) pathways both regulate proliferation and differentiation, and the cellular response to each is often influenced by the other. Here, we describe a mechanism that links them in a sequential fashion, in the developing compound eye of Drosophila. EGFR activation induces photoreceptor (R cell) differentiation and promotes their expression of Delta. This Notch ligand then induces neighboring cells to become nonneuronal cone cells. ebi and strawberry notch (sno) regulate EGFR-dependent Delta transcription by antagonizing a repressor function of Suppressor of Hairless (Su(H)). Sno binds to Su(H), and Ebi, an F-box/WD40 protein, forms a complex with Su(H) and the corepressor SMRTER. EGFR-activated transcriptional derepression requires ebi and sno, is proteasome-dependent, and correlates with the translocation of SMRTER to the cytoplasm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An NRSF/REST-like repressor downstream of Ebi/SMRTER/Su(H) regulates eye development in Drosophila.

The corepressor complex that includes Ebi and SMRTER is a target of epidermal growth factor (EGF) and Notch signaling pathways and regulates Delta (Dl)-mediated induction of support cells adjacent to photoreceptor neurons of the Drosophila eye. We describe a mechanism by which the Ebi/SMRTER corepressor complex maintains Dl expression. We identified a gene, charlatan (chn), which encodes a C2H2...

متن کامل

The transcriptional corepressor SMRTER influences both Notch and ecdysone signaling during Drosophila development

SMRTER (SMRT-related and ecdysone receptor interacting factor) is the Drosophila homologue of the vertebrate proteins SMRT and N-CoR, and forms with them a well-conserved family of transcriptional corepressors. Molecular characterization of SMRT-family proteins in cultured cells has implicated them in a wide range of transcriptional regulatory pathways. However, little is currently known about ...

متن کامل

Proneural enhancement by Notch overcomes Suppressor-of-Hairless repressor function in the developing Drosophila eye

BACKGROUND The receptor protein Notch plays a conserved role in restricting neural-fate specification during lateral inhibition. Lateral inhibition requires the Notch intracellular domain to coactivate Su(H)-mediated transcription of the Enhancer-of-split Complex. During Drosophila eye development, Notch plays an additional role in promoting neural fate independently of Su(H) and E(spl)-C, and ...

متن کامل

The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis.

The X-Notch-1 receptor, and its putative ligand, X-Delta-1, are thought to mediate an inhibitory cell-cell interaction, called lateral inhibition, that limits the number of primary neurons that form in Xenopus embryos. The expression of Xenopus ESR-1, a gene related to Drosophila Enhancer of split, appears to be induced by Notch signaling during this process. To determine how the activation of ...

متن کامل

Mutual inactivation of Notch and Delta permits a simple mechanism for lateral inhibition patterning

Lateral inhibition patterns mediated by the Notch-Delta signaling system occur in diverse developmental contexts. These systems are based on an intercellular feedback loop in which Notch activation leads to down-regulation of Delta. However, even in relatively well-characterized systems, the pathway leading from Notch activation to Delta repression often remains elusive. Recent work has shown t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 110  شماره 

صفحات  -

تاریخ انتشار 2002